skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Evans, James S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Mass mortality of the dominant coral reef herbivore Diadema antillarum in the Caribbean in the early 1980s contributed to a persistent phase shift from coral- to algal-dominated reefs. In 2022, a scuticociliate most closely related to Philaster apodigitiformis caused further mass mortality of D. antillarum across the Caribbean, leading to >95% mortality at affected sites. Mortality was also reported in the related species Diadema setosum in the Mediterranean in 2022, though the causative agent of the Mediterranean outbreak has not yet been determined. In April 2023, mass mortality of Diadema setosum occurred along the Sultanate of Oman's coastline. Urchins displayed signs compatible with scuticociliatosis including abnormal behavior, drooping and loss of spines, followed by tissue necrosis and death. Here we report the detection of an 18S rRNA gene sequence in abnormal urchins from Muscat, Oman, that is identical to the Philaster strain responsible for D. antillarum mass mortality in the Caribbean. We also show that scuticociliatosis signs can be elicited in Diadema setosum by experimental challenge with the cultivated Philaster strain associated with Caribbean scuticociliatosis. These results demonstrate the Philaster sp. associated with D. antillarum mass mortality has rapidly spread to geographically distant coral reefs, compelling global-scale awareness and monitoring for this devastating condition through field surveys, microscopy, and molecular microbiological approaches, and prompting investigation of long-range transmission mechanisms. 
    more » « less
  2. A scuticociliate ( Philaster sp.) causes mass mortality of the long-spined sea urchin Diadema antillarum . 
    more » « less